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Evanescent wave approach to diffractive phenomena in convex billiards with corners
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What we are going to call in this paper “diffractive phenomena” in billiards is far from being deeply
understood. These are sorts of singularities that, for example, some kind of corners introduce in the energy
eigenfunctions. In this paper we use the well-known scaling quantization procedure to study them. We show
how the scaling method can be applied to convex billiards with corners, taking into account the strong
diffraction at them and the techniques needed to solve their Helmholtz equation. As an example, we study a
classically pseudointegrable billiard, the truncated triangle. Then we focus our attention on the spectral behav-
ior. A numerical study of the statistical properties of high-lying energy levels is carried out. It is found that all
computed statistical quantities are roughly described by the so-called semi-Poisson statistics, but it is not clear
whether the semi-Poisson statistics is the correct one in the semiclassical limit.
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[. INTRODUCTION functions in the basis. This is the way we have dealt with
diffraction.

In this work we calculate very high-lying eigenvalues of a  For simplicity we restrict our considerations to an angle
billiard system using the so-called scaling metHdd-3].  of 3w/4. A particularly suitable example to study the effect
This method has two main advantages, it is formulated omf this kind of corner on the quantum properties is the po-
the boundary of the billiardallowing matrices of ordek, the  lygonal billiard shown in Fig. 1. This billiard is called the
wavenumberand it avoids zeroes searching algorithms. Wetruncated triangle. It has been studied in a variety of contexts
have solved the Helmholtz equation with the Dirichlet [5—-11].
boundary conditions on the billiard boundary. A point worth  The truncated triangle belongs to the classrational
mentioning is that any eigenfunction@" at domain points. polygons That are polygons where all angles=m;#/n;

At straight segments of the boundary, eigenfunctions are redetween sides are rationally related 40 wherem; ,n;>0
flected as odd functions, so that the result satisfies the Diare relatively prime integers. The free motion inside a ratio-
richlet condition. Though being al98™ at the boundary by nal polygon is integrable ifn;=1 for all j, which is the case
straight pieces, they are not analytical at a vertex when twdor rectangles, the equilateral triangles, th&,m/4,m/4 tri-
segments of the boundary joiwith inner anglenr/r, where  angles, and ther/2,7/3,7/6 triangles. All other rational

r is a noninteger numbgrThis feature leads to what we polygons arepseudointegrabld5]. Like in integrable sys-
address as diffractive phenomena. tems, the phase space is foliated by two-dimensional invari-

The main idea behind the scaling method is that the triagnt surface$12,13. However, the genus of the surfaces is
functions of the variational problem can be parametrized bygreater than one due witical cornerswith m;>1 [5]. In
energy(alternatively, by the wavenumbé&j). With this idea  the case of the truncated triangle, the gengs=2. Roughly
in mind these functions are expanded in a suitable scalingpeaking, the invariant surface is a torus with an additional
basis(plane waves with different propagation directions arehandle.
one example and these are the elements we usg Askéng Quantum signatures of pseudointegrability can be found
the function to be zero at the boundary of the billiard is thein the energy eigenfunctiorjd4] and in the statistical prop-
same as asking its norm there to be zero as well. Thererties of energy levelg5]. The energy levels of pseudointe-
eigenvaluegand eigenfunctionscan be obtained by solving grable systems are correlated in contrast to those of inte-
a generalized eigenvalue problem that involves the quadgrable systems which are generically well described by the
ratic form associated with the norm of the function on thePoissonian random procesgé$s]. For example, the nearest-
boundary. neighbor spacing distribution of pseudointegrable systems

In applying the method to this system, evanescent waves
were needed. This is because real plane wave solutions to the
Helmholtz equation cannot represent all the features of dif-
fraction. It has been showpd] that an evanescent plane
wave, which oscillates along propagation direction faster 1
than the wavenumbd; can be constructed by means of real
plane waves. Nevertheless, the corresponding superposition
is a singular one, suggesting the direct use of the evanescent

| a = 1 !
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generically displays level repulsiofi5], resembling the evanescent functions must be considered to solve the prob-

Gaussian orthogonal ensemb(6&OE) of random-matrix lem.

theory[16] which describes fully chaotic systems with time-  Several authors have focused their attention on this issue

reversal symmetryf17]. Significant deviations from GOE [2,4,30—32. For polygonal billiards, in the generic case,

have been observed first in Refd,18]. It has been sug- theory suggests that there is no real plane wave superposition

gested that the spectral statistics of pseudointegrable systertigt can be an eigenfunctid80]. On the other hand, good

is another example of critical or intermediate statisticsnumerical results using only plane waves could be found

[19,2Q. Critical statistics appear in many condensed mattef32], but working within the region of low energies. Evanes-

problems such as in mesoscopic disordered systems at tleent waves were studied in detail by Befa} in the context

critical point of the metal-insulator transiti¢@1], in systems  of quantum billiards. In this approach, the main reason to do

with a few interacting electror22], and in incommensurate it comes from the idea of constructing them by continuation

multiwalled carbon nanotubgg3]. of an external scattering superposition, containing only real
In Refs.[19,2( it has been proposed to use the semi-plane waves. In principle, this does not seem to be possible.

Poisson(SP statistics as a reference point for critical statis- Anyway, he showed how evanescent waves can be expressed

tics. The SP statistics is defined by a simple constructionas the singular limit of an angular superposition of real plane

remove every other level from an ordered Poisson sequenagaves.

[20,24]. The SP statistics is useful because it provides ex- In our system, and working at high energies, we need to

plicit formulas for a number of statistical quantities which consider evanescent waves explicitely, because a real plane

can be compared to the statistical properties of a given syswave representation is singular. In the semiclassical limit, the

tem. For several pseudointegrable syst¢h®20,25-29 it  only way to obtain eigenfunctions that include evanescent

has been confirmed that the SP statistics indeed describes thvaves is by considering them in the variational probl&h

short-range level correlations rather well. Comparing then the remaining part of this section we are going to show

long-range level correlations it is numerically a difficult task some examples of the waves considered and the idea behind

because the statistical properties of rational polygons cortheir selection.

verge extremely slowly as energy is increa$2d,29. For- Plane wave solutions to the Helmholtz equation can be

tunately, semiclassical periodic-orbit theory allows to com-written as

pute analytically the long-range level correlations, in terms

of the level compressibility, of a few special systems, like P(r)=exfdik cog O+ia)x+iksin(+ia)y]

certain right triangle$28] and the barrier billiardi29]. In the ) ) _ _

former casey differs in general from the SP result, whereasWith ¢ and a real, using coordinates= (x,y) in the plane.

in the latter casey is in agreement with the SP statistics. We can express this wave in a slightly different fashion by

Nothing is known analytically about the generic case. distinguishing the real and imaginary parts in the exponent,
Our numerical analysis will show that the truncated tri- ) - ) ~
angle is well described by the SP statistics but deviations are P(r)=exdik cosiia)x]exfd —ksinh(a)y].

not negligible. Our analysis extends that reported in R&f. ~
in many respects(i) The scaling method allows us to com- Here, the propagation directioxn=x cosé+ysiné implies
pute more levels, giving a better statisti¢8) Moreover, an angled over thex axis. In this direction the function has
high-lying energy levels can be computed. This puts us in @ wavelength that is given by (k cosha)<2w/k. How-
position to study the relevant asymptotic regirti#¢) More  ever, in the orthogonal directiop the function is an expo-
statistical quantities are computédtl) The numerical results nential with coefficient— k sinha.
are compared to the SP statistics. An example of these functions applied to our system can
The paper is organized as follows: in Sec. II, we describeye found in Fig. 2, where we show an evanescent wave cor-
the features that are considered when applying the scalingsponding to the truncated triangle of parameter vaue
method to the system under investigation. In Sec. llI, We:(\/g—l)/Z(Note that since the absolute size of the system
present the statistical studies carried out with the data thag jrrelevant, we measure length scales as dimensionless
has been obtained. Finally, Sec. IV is devoted to CondUSion?quantities_ In this case we choske= 20 in order to have a
visible wave. For the higher-lying wave numbeks=1000
or greater these functions are difficult to see in the domain
since they decay very fast. Nevertheless, the slower oscillat-
ing functions we have used in the latter energy region can be
We are not going to explain the scaling method here, andgeen over the boundary.
we address the reader to the Appendix and the given refer- Now that the general ideas related to evanescent waves
ences for details. have been exposed, we are going to explain the way we
An eigenfunction of a billiard can be constructed as aselected them, and we are also going to show some examples
plane wave superposition. This can include evanescerior k=1000. The first thing to point out is that diffraction is
waves, i.e., plane waves with complex wave vectors. Thesgenerated at the critical corner with angler/3 that is
types of waves should be present in quantum billiards anghown in Fig. 1. So, our sets or families of evanescent waves
can be associated with diffractive phenomena. Discontinuiare centered at this corner. We consider three different kinds
ties at the boundaries seem to be strongly related to the wagf functions, all sharing the previous property, but decaying

II. THE SCALING METHOD APPLIED
TO THE TRUNCATED TRIANGLE
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FIG. 2. Evanescent wave fde=20 on the truncated triangle
domain with parameter valua=(\5—1)/2. The propagation di-
rectionx (given by sing=—0.3 in this caspand the corresponding
decaying directiory are both shown by the arrows. Also, we point
out values 0 ana of the arclength coordinatg

03 05 a

to one or the other “side” of the cornefin terms of the ©

arclength boundary coordinatg in the first place and also

an additional one that decays to both sides. We use a family

of 12 waves whose propagation directigh is slightly

smaller than— /4, i.e., around the right hand side of the

boundary as seen from Fig. 1, another set of 8 waves with

almost horizontal propagation and finally one that goes along

an intermediate directioffor this one we took a value of

sinf=—0.3, as can be seen in Fig).2n fact, in order to

appreciate their contribution, it is convenient to look at them

on the boundary of the billiard. For this reason we show in  FIG. 3. Three examples of evanescent waves over the billiard

Fig. 3 three examples of evanescent waves that are godsbundary fork=1000. Vertical axis corresponds to the real part of

representatives of these three families. As already mentionethe evanescent wave in arbitrary units. Horizontal axis corresponds

the exponential decay is from the critical corner, which cor-to the boundary arclength coordinaje(dimensionless In (a) we

responds taj=a in terms of the boundary coordinate. This Show a wave decaying to the rigfiropagation direction given by

is the effect of considering an angle slightly different from Sin¢==0.682), in(b) one to the left (sir¥=—0.025), and ir(c) to

— /4 angle for the propagation direction. The same happen@th sides (si=-0.3) from q=a, the position of the critical

with the second family whose example is directed almost®e"

along the horizontafleft) segment of the boundary. Finally,

we show the evanescent wave that decays to both sides of the Ill. SPECTRAL STATISTICS

corner. _ We here examine the spectral statistics of the quantized
_ This approach to the problem has proven to be very effiyncated triangle. We consider the generic case whdse

cient. As a matter of fact, studying carefully several billiard 5, irational number. In the nongeneric caseadieing ra-

eigenfunctions that show the greatest ndemon over the  yiqna| the energy spectrum contains a subset of Poisson dis-

boundary(without considering evanescent waves in their calipted levels[5]. We focus on the parameter value

culation, we could check that these are the main compo-_, =_ ;
ments of the diffracted field. (\5—1)/2, the reciprocal of the golden mean. For other

. . arameter values of [(\5—1)/2+0.2, 2k, and 24
Then we apply the symmetries of our system in order t N ,
) L e . +0.1] similar results have been obtained. We use energy
get the right contributions. This is easy to implement by

using the symmetry operations of s, group. windows of length 20000 in five different regimes starting

. ith level number 853, 32124, 89607, 149879, and
We have taken only up to 21 evanescent waves in order t . ' ' ' !
get our results. This is a small number compared to th ggssggggrres%o?ggnog to the wave numier 100, 600,
roughly 1000 real plane waves that are used in the highest="_"" » an : . .
lying energy window we have obtainéd]. But they are key To study the local fluctuations in the level sequelge

to lower the error of the eigenvalues. This shows that, every E2<Eg<" - itis necessary to remove the systemalic glo-

though the relevance of this contribution goes to zero in th%’aI ene"rgy dependencg of the average density. T°_d9 S0, we
semiclassical limit we need to consider it in order to resolve'unfold” the spectra in the usual way by setting,
individual states. =N(E,); see, e.g., Ref33]. N(E) is the smooth part of the

0.61 a 0.62
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FIG. 4. Difference between the cumulative spacing distribution

of the first energy window and the SP result.

dows.

FIG. 5. The cumulative spacing distribution of all energy win-

integrated density of states, i.e., the number of levels up tepacing distribution to the SP result for the lowest-energy
energyE. We approximateN(E) by the generalized Weyl's window. Good agreement with the SP statistics can be ob-
law including perimeter and corner correctidid] served. Figure 5 shows a magnification, containing also the
other energy windows. We see increasing deviations from SP
for k=600 andk= 1000, and then decreasing deviations for
k=1300 andk=1500. No clear trend to SP is visible as one
goes to higher energies.
whereA=a+1/2 is the area of the billiard, =2a+ 2+ /2 Similar small deviations from the SP statistics have been
is the perimeter, an@€=11/36 is the corner correction. The observed at the metal-insulator transition in the three-
unfolded Spectré’én} have unit mean level Spacing and are dimensional Anderson model. In that case, an ensemble av-
dimensionless. Henceforth, the tilde will be suppressed. €rage over certain boundary conditions removes the devia-
tions considerably35]. To see whether this is possible also
in our case, we consider Neumann boundary conditions on
the two boundary segments which do not touch the critical
The most popular statistical quantity in the field of quan-corner: see Fig. 1. In this way we obtain four energy spectra
defined as the probability density of the spacén@n units of  Neumann/Dirichlet, and Neumann/Neumann-boundary con-
the mean level spacingetween adjacent levels, ditions. In contrast to the case of the Anderson model we find
n that averaging over these boundary conditions does not re-
im% iEl S(S—E; 1 +E)). ) duce the deviation from the SP statistics.

— 0

_ A L
N(E)=EE—E\/E+C, (1)

A. Nearest-neighbor spacing distributions

P(s)=1

. . T B. Next-to-nearest spacing distributions
Clearly, the nearest-neighbor spacing distribution is a mea-

sure of short-range level correlations. We will compute its
integral, the cumulative spacing distribution

We now consider the next-to-nearest spacing distribution
(second-neighbor-spacing distributjoand its integral. The
SP statistics givep20]

S
I(s)=f P(s")ds’. 3 8
0 Psp(2,8) = §Ssefzs,
For the Poisson statisticPp(s)=exp(—s) and I(s)=1
—exp(—s), the GOE is well described by the Wigner surmise 1
Pw(s) = (m/2)s exp(—7s4) and |y (s)=1—exp( ms/4), lsH(25)=1— §(4S3+ 6s’+6s+3)e” %S, (5)

and for the SP statistid20,24]

PsH(S)=4se %5, Igds)=1—(2s+1)e %, (4) Figure 6 shows that the cumulative next-to-nearest spac-
ing distribution is well described by the SP statistics. The
maximal deviations from SP are smaller than in the case of
repulsion similar to the Wigner surmise. At large PgHS) the nearest-neighbor spacing distribution in Fig. 5. But,
has an exponential fall-off as the Poisson statistics. again, there is no clear convergence to SP statistics as one

In Fig. 4 we plot the difference between the cumulativegoes to higher energies.

At small's, PgH(s) exhibits a linear increase from zeflevel
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FIG. 6. The cumulative next-to-nearest spacing distribution. FIG. 8. The form factor9) for the highest-energy window av-

eraged over small intervals of sizer=0.006. The smooth curve is
the fit (10) with c=4.464.

So far we have studied short-range level correlations
(nearest and next-to-nearest spacing distributioheng-  sult, without showing a clear stabilization. To estimate the
range level correlations are conveniently studied with thdimit curve ask— o we use the extrapolation procedure de-

C. Number variance

help of the number variance scribed in Ref[28]: extrapolate point by poinwith L fixed)
5 the four highest curves with a f&(L)+B(L)/k. The limit
S(L)=((n(L,E)=L)%). (6)  curve,A(L), is shown as dashed curve in Fig. 7. It is closer

to the SP result. To measure the difference we concentrate on
the slope in the region of large, the so-called level com-
pressibility

3(L) is the local variance of the number(L,E)=N(E

+L/2)—N(E—L/2) of energy levels in the intervdlE

—L/2,E+L/2]. For the SP statistics we ha{&9,20,24
(L)

x= lim——. (8)

3 P(|_)=E+}(1—e*4L) (7) L
S 2 8 '

L—oo

Figure 7 shows the number variance computed for the fiv&//e gety~0.41 from the extrapolated curve. This is close to
energy windows. Note that the regime is well below thethe SP resuli28] of 1/2 (1 for Poissori36] and 0 for GOE
crossover region wherg(L) begins to saturate at a value [16,36).
determined by the shortest periodic orf86]. With increas-
ing energy the number variance comes closer to the SP re- D. The form factor

Another measure of long-range level correlations is the
form factor K(7), the Fourier transform of the two-point
............ semi—Poisson correlation function. The limit—O0 is related to the number
—— k=100-k=1500 variance by means & (0)= x (see, e.g., Ref.28]) with x
---- extrapolated from Eq. (8).

The form factor can be approximated numerically(bge,
e.g., Ref[37))

15

+

n 2

1

K(T;n):ﬁ eZ’JTiEjT

9

™M

In our casen=20 000. Note that is dimensionless. Figure 8
shows K(7;n) averaged over small intervals of sizer
=0.006 in the high-energy regime, i.&51500. It is diffi-
cult to estimatek (0) from such kinds of noisy data, but it is
‘ ‘ justified to say thak(0) is below the SP prediction 1/2, in
0 10 L 20 30 agreement with our former numerical results on the number
variance.

FIG. 7. Number varianc& (L) for k=100, 600, 1000, 1300, A better way to compare the form factor to the SP statis-
and 1500(from below). tics is introduced in Ref[28]. Fit K(7;n) to the function
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—2c+4m?2

c
Kiir(7) = PR,

(10

If c=4 then function(10) is the SP form factor. We use the

quantity Kg(0)—1/2 to measure the difference to the SP

statistics. Keep in mind thd€;;;(0), in general, differs from
K(0;n) since it depends also df(r;n) with 7>0. Figure 8
shows the result obtained by fitting Ed.0) to the smoothed
data over the ranges€97<3. We getK;;(0)~0.552. For the
lower-energy windows withkk=600, k=1000, andk= 1300
we find 0.548, 0.576, and 0.56, respectively.

Again, as for the other spectral quantities described in th
previous subsections, we find that the spectral statistics

i
roughly described by the SP statistics. However, there ar(Eh

small but significant deviations which show no clear trend tg
zero as the energies are increased.

IV. CONCLUSION

PHYSICAL REVIEW E67, 046221 (2003

to diffraction at corners. Moreover, we would like to thank
H. Schomerus and T. Gorin for discussions.

APPENDIX: THE SCALING METHOD

In this appendix we are going to briefly explain the scal-
ing method[1-3]. The main point that one should have in
mind is that the boundary norm can be written as a function
of energy because scaling is usedgl(ir) satisfies the Helm-
holtz equation with eigenvaluk% and we associate with it
the scaling functionp(k,r) = ¢(kr/kg) then, these functions
satisfy the same equation with eigenvakfe If we have a
Dilliard defined by a star-shaped domain arld,axists such
at¢,(k,,r)=0 at the boundary, then this is a scaling
gigenfunction or, equivalently, an eigenfunction of the bil-
Yiard with Dirichlet boundary conditions.

The boundary norm defined by the expressibfk)
=¢.¢(k,r)dl/r, can be expanded up to third order around
k, , independently on the exact shapedafWe remind that

We have shown how the scaling method can be applied t@ r.n (wheren is the unit outgoing normal vector t9) is
convex billiards with corners. To gain insight into the strong always positive for star-shaped domains. Taking into account
diffractive phenomena that appear in these systems we havhis result we can evaluate the norm and its derivatiiean

studied the truncated triangle. As a result of our investigayalue ko=k,+ 6,

tions of the diffracted field we could identify its main com-

ponents. These were directly introduced in the function basis
in order to obtain the spectral data of this system. Evanescent

, obtaining

(A1)

f(ko)— k(ko)+o(54) 0.

waves conveniently selected and associated with the centers
of diffraction (in our case the two straight segments junction This useful expansion, dropping terms of orﬁr turns
at 37/4) have been successfully identified as a very efficienput to be our quantization condition. Then, all the scaling

way to deal with these kinds of phenomena. This allowed u
to obtain a great number of highly excited eigenvalues.

We have studied the statistical properties of high-lying
energy levels in this pseudointegrable billiard. We have
found that the nearest-neighbor spacing distributions, next-
to-nearest spacing distributions, number variance, and the

spectral form factor are roughly described by the semi-
Poisson(SP statistics. Whether the SP statistics is asymp-
totically the exact statistics cannot be decided.
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igenfunctions with eigenvalues closekipcan be found by
solving a generalized eigenvalue problem:

&#=0. (A2)

dF
[ﬂ(ko)_)\,ﬂz(ko)

In this equation and for numerical calculations, the qua-
dratic formF associated Wlthi can be evaluated in a basis of
scaling functionsy;(k,r); i ..N (such as plane waves,
for instance by means of

Fiy(ko)= 3§c¢i<ko,r>wj<ko,r>d|/rn. (A3)

(0]

for the ideas he gave us regarding the evanescent wave aphe eigenfunctions are,(k,r)= E 1g"l,//l(k r), and the

proach

eigenvalues can be found kg=ko—2/\ ,
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