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Evanescent wave approach to diffractive phenomena in convex billiards with corners

Jan Wiersig* and Gabriel G. Carlo†

Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany
~Received 5 December 2002; published 28 April 2003!

What we are going to call in this paper ‘‘diffractive phenomena’’ in billiards is far from being deeply
understood. These are sorts of singularities that, for example, some kind of corners introduce in the energy
eigenfunctions. In this paper we use the well-known scaling quantization procedure to study them. We show
how the scaling method can be applied to convex billiards with corners, taking into account the strong
diffraction at them and the techniques needed to solve their Helmholtz equation. As an example, we study a
classically pseudointegrable billiard, the truncated triangle. Then we focus our attention on the spectral behav-
ior. A numerical study of the statistical properties of high-lying energy levels is carried out. It is found that all
computed statistical quantities are roughly described by the so-called semi-Poisson statistics, but it is not clear
whether the semi-Poisson statistics is the correct one in the semiclassical limit.
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I. INTRODUCTION

In this work we calculate very high-lying eigenvalues o
billiard system using the so-called scaling method@1–3#.
This method has two main advantages, it is formulated
the boundary of the billiard~allowing matrices of orderk, the
wavenumber! and it avoids zeroes searching algorithms. W
have solved the Helmholtz equation with the Dirich
boundary conditions on the billiard boundary. A point wor
mentioning is that any eigenfunction isC` at domain points.
At straight segments of the boundary, eigenfunctions are
flected as odd functions, so that the result satisfies the
richlet condition. Though being alsoC` at the boundary by
straight pieces, they are not analytical at a vertex when
segments of the boundary join~with inner anglep/r , where
r is a noninteger number!. This feature leads to what w
address as diffractive phenomena.

The main idea behind the scaling method is that the t
functions of the variational problem can be parametrized
energy~alternatively, by the wavenumberk). With this idea
in mind these functions are expanded in a suitable sca
basis~plane waves with different propagation directions a
one example and these are the elements we use here!. Asking
the function to be zero at the boundary of the billiard is t
same as asking its norm there to be zero as well. Th
eigenvalues~and eigenfunctions! can be obtained by solving
a generalized eigenvalue problem that involves the qu
ratic form associated with the norm of the function on t
boundary.

In applying the method to this system, evanescent wa
were needed. This is because real plane wave solutions t
Helmholtz equation cannot represent all the features of
fraction. It has been shown@4# that an evanescent plan
wave, which oscillates along propagation direction fas
than the wavenumberk, can be constructed by means of re
plane waves. Nevertheless, the corresponding superpos
is a singular one, suggesting the direct use of the evanes
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functions in the basis. This is the way we have dealt w
diffraction.

For simplicity we restrict our considerations to an ang
of 3p/4. A particularly suitable example to study the effe
of this kind of corner on the quantum properties is the p
lygonal billiard shown in Fig. 1. This billiard is called th
truncated triangle. It has been studied in a variety of conte
@5–11#.

The truncated triangle belongs to the class ofrational
polygons. That are polygons where all anglesa j5mjp/nj
between sides are rationally related top, wheremj ,nj.0
are relatively prime integers. The free motion inside a rat
nal polygon is integrable ifmj51 for all j, which is the case
for rectangles, the equilateral triangles, thep/2,p/4,p/4 tri-
angles, and thep/2,p/3,p/6 triangles. All other rational
polygons arepseudointegrable@5#. Like in integrable sys-
tems, the phase space is foliated by two-dimensional inv
ant surfaces@12,13#. However, the genus of the surfaces
greater than one due tocritical corners with mj.1 @5#. In
the case of the truncated triangle, the genus isg52. Roughly
speaking, the invariant surface is a torus with an additio
handle.

Quantum signatures of pseudointegrability can be fou
in the energy eigenfunctions@14# and in the statistical prop
erties of energy levels@5#. The energy levels of pseudointe
grable systems are correlated in contrast to those of i
grable systems which are generically well described by
Poissonian random processes@15#. For example, the neares
neighbor spacing distribution of pseudointegrable syste

FIG. 1. The truncated triangle.
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J. WIERSIG AND G. G. CARLO PHYSICAL REVIEW E67, 046221 ~2003!
generically displays level repulsion@5#, resembling the
Gaussian orthogonal ensemble~GOE! of random-matrix
theory@16# which describes fully chaotic systems with tim
reversal symmetry@17#. Significant deviations from GOE
have been observed first in Refs.@7,18#. It has been sug-
gested that the spectral statistics of pseudointegrable sys
is another example of critical or intermediate statist
@19,20#. Critical statistics appear in many condensed ma
problems such as in mesoscopic disordered systems a
critical point of the metal-insulator transition@21#, in systems
with a few interacting electrons@22#, and in incommensurate
multiwalled carbon nanotubes@23#.

In Refs. @19,20# it has been proposed to use the sem
Poisson~SP! statistics as a reference point for critical stat
tics. The SP statistics is defined by a simple construct
remove every other level from an ordered Poisson seque
@20,24#. The SP statistics is useful because it provides
plicit formulas for a number of statistical quantities whic
can be compared to the statistical properties of a given
tem. For several pseudointegrable systems@19,20,25–29#, it
has been confirmed that the SP statistics indeed describe
short-range level correlations rather well. Comparing
long-range level correlations it is numerically a difficult ta
because the statistical properties of rational polygons c
verge extremely slowly as energy is increased@28,29#. For-
tunately, semiclassical periodic-orbit theory allows to co
pute analytically the long-range level correlations, in ter
of the level compressibilityx, of a few special systems, lik
certain right triangles@28# and the barrier billiard@29#. In the
former casex differs in general from the SP result, where
in the latter casex is in agreement with the SP statistic
Nothing is known analytically about the generic case.

Our numerical analysis will show that the truncated t
angle is well described by the SP statistics but deviations
not negligible. Our analysis extends that reported in Ref.@7#
in many respects:~i! The scaling method allows us to com
pute more levels, giving a better statistics.~ii ! Moreover,
high-lying energy levels can be computed. This puts us i
position to study the relevant asymptotic regime.~iii ! More
statistical quantities are computed.~iv! The numerical results
are compared to the SP statistics.

The paper is organized as follows: in Sec. II, we descr
the features that are considered when applying the sca
method to the system under investigation. In Sec. III,
present the statistical studies carried out with the data
has been obtained. Finally, Sec. IV is devoted to conclusio

II. THE SCALING METHOD APPLIED
TO THE TRUNCATED TRIANGLE

We are not going to explain the scaling method here,
we address the reader to the Appendix and the given re
ences for details.

An eigenfunction of a billiard can be constructed as
plane wave superposition. This can include evanesc
waves, i.e., plane waves with complex wave vectors. Th
types of waves should be present in quantum billiards
can be associated with diffractive phenomena. Discontin
ties at the boundaries seem to be strongly related to the
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evanescent functions must be considered to solve the p
lem.

Several authors have focused their attention on this is
@2,4,30–32#. For polygonal billiards, in the generic cas
theory suggests that there is no real plane wave superpos
that can be an eigenfunction@30#. On the other hand, good
numerical results using only plane waves could be fou
@32#, but working within the region of low energies. Evane
cent waves were studied in detail by Berry@4# in the context
of quantum billiards. In this approach, the main reason to
it comes from the idea of constructing them by continuat
of an external scattering superposition, containing only r
plane waves. In principle, this does not seem to be poss
Anyway, he showed how evanescent waves can be expre
as the singular limit of an angular superposition of real pla
waves.

In our system, and working at high energies, we need
consider evanescent waves explicitely, because a real p
wave representation is singular. In the semiclassical limit,
only way to obtain eigenfunctions that include evanesc
waves is by considering them in the variational problem@2#.
In the remaining part of this section we are going to sh
some examples of the waves considered and the idea be
their selection.

Plane wave solutions to the Helmholtz equation can
written as

c~r !5exp@ ik cos~u1 ia!x1 ik sin~u1 ia!y#

with u anda real, using coordinatesr5(x,y) in the plane.
We can express this wave in a slightly different fashion
distinguishing the real and imaginary parts in the expone

c~r !5exp@ ik cosh~a!x̃#exp@2k sinh~a!ỹ#.

Here, the propagation directionx̃5x cosu1ysinu implies
an angleu over thex axis. In this direction the function ha
a wavelength that is given by 2p/(k cosha),2p/k. How-
ever, in the orthogonal directionỹ the function is an expo-
nential with coefficient2k sinha.

An example of these functions applied to our system c
be found in Fig. 2, where we show an evanescent wave
responding to the truncated triangle of parameter valua
5(A521)/2 ~Note that since the absolute size of the syst
is irrelevant, we measure length scales as dimension
quantities!. In this case we chosek520 in order to have a
visible wave. For the higher-lying wave numbers (k.1000
or greater! these functions are difficult to see in the doma
since they decay very fast. Nevertheless, the slower osci
ing functions we have used in the latter energy region can
seen over the boundary.

Now that the general ideas related to evanescent wa
have been exposed, we are going to explain the way
selected them, and we are also going to show some exam
for k51000. The first thing to point out is that diffraction i
generated at the critical corner with angle 3p/4 that is
shown in Fig. 1. So, our sets or families of evanescent wa
are centered at this corner. We consider three different ki
of functions, all sharing the previous property, but decay
1-2
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EVANESCENT WAVE APPROACH TO DIFFRACTIVE . . . PHYSICAL REVIEW E 67, 046221 ~2003!
to one or the other ‘‘side’’ of the corner~in terms of the
arclength boundary coordinateq) in the first place and also
an additional one that decays to both sides. We use a fa
of 12 waves whose propagation directionu is slightly
smaller than2p/4, i.e., around the right hand side of th
boundary as seen from Fig. 1, another set of 8 waves w
almost horizontal propagation and finally one that goes al
an intermediate direction~for this one we took a value o
sinu520.3, as can be seen in Fig. 2!. In fact, in order to
appreciate their contribution, it is convenient to look at the
on the boundary of the billiard. For this reason we show
Fig. 3 three examples of evanescent waves that are g
representatives of these three families. As already mentio
the exponential decay is from the critical corner, which c
responds toq5a in terms of the boundary coordinate. Th
is the effect of considering an angle slightly different from
2p/4 angle for the propagation direction. The same happ
with the second family whose example is directed alm
along the horizontal~left! segment of the boundary. Finally
we show the evanescent wave that decays to both sides o
corner.

This approach to the problem has proven to be very e
cient. As a matter of fact, studying carefully several billia
eigenfunctions that show the greatest norm~error! over the
boundary~without considering evanescent waves in their c
culation!, we could check that these are the main com
nents of the diffracted field.

Then we apply the symmetries of our system in order
get the right contributions. This is easy to implement
using the symmetry operations of theC2v group.

We have taken only up to 21 evanescent waves in orde
get our results. This is a small number compared to
roughly 1000 real plane waves that are used in the high
lying energy window we have obtained@1#. But they are key
to lower the error of the eigenvalues. This shows that, e
though the relevance of this contribution goes to zero in
semiclassical limit we need to consider it in order to reso
individual states.

FIG. 2. Evanescent wave fork520 on the truncated triangle
domain with parameter valuea5(A521)/2. The propagation di-

rection x̃ ~given by sinu520.3 in this case! and the corresponding

decaying directionỹ are both shown by the arrows. Also, we poi
out values 0 anda of the arclength coordinateq.
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III. SPECTRAL STATISTICS

We here examine the spectral statistics of the quanti
truncated triangle. We consider the generic case wherea is
an irrational number. In the nongeneric case ofa being ra-
tional, the energy spectrum contains a subset of Poisson
tributed levels @5#. We focus on the parameter valuea
5(A521)/2, the reciprocal of the golden mean. For oth
parameter values ofa @(A521)/210.2, 2/p, and 2/p
10.1] similar results have been obtained. We use ene
windows of length 20 000 in five different regimes startin
with level number 853, 32 124, 89 607, 149 879, a
190 356 corresponding to the wave numberk5100, 600,
1000, 1300, and 1500.

To study the local fluctuations in the level sequenceE1
<E2<E3<••• it is necessary to remove the systematic g
bal energy dependence of the average density. To do so
‘‘unfold’’ the spectra in the usual way by settingẼn

5N̄(En); see, e.g., Ref.@33#. N̄(E) is the smooth part of the

FIG. 3. Three examples of evanescent waves over the bill
boundary fork51000. Vertical axis corresponds to the real part
the evanescent wave in arbitrary units. Horizontal axis correspo
to the boundary arclength coordinateq ~dimensionless!. In ~a! we
show a wave decaying to the right~propagation direction given by
sinu520.682), in~b! one to the left (sinu520.025), and in~c! to
both sides (sinu520.3) from q5a, the position of the critical
corner.
1-3
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integrated density of states, i.e., the number of levels up
energyE. We approximateN̄(E) by the generalized Weyl’s
law including perimeter and corner corrections@34#

N̄~E!5
A

4p
E2

L

4p
AE1C, ~1!

whereA5a11/2 is the area of the billiard,L52a121A2
is the perimeter, andC511/36 is the corner correction. Th
unfolded spectra$Ẽn% have unit mean level spacing and a
dimensionless. Henceforth, the tilde will be suppressed.

A. Nearest-neighbor spacing distributions

The most popular statistical quantity in the field of qua
tum chaos is the nearest-neighbor spacing distribution.
defined as the probability density of the spacings ~in units of
the mean level spacing! between adjacent levels,

P~s!5 lim
n→`

1

n (
i 51

n

d~s2Ei 111Ei !. ~2!

Clearly, the nearest-neighbor spacing distribution is a m
sure of short-range level correlations. We will compute
integral, the cumulative spacing distribution

I ~s!5E
0

s

P~s8!ds8. ~3!

For the Poisson statisticsPP(s)5exp(2s) and I P(s)51
2exp(2s), the GOE is well described by the Wigner surmi
PW(s)5(p/2)s exp(2ps2/4) and I W(s)512exp(2ps2/4),
and for the SP statistics@20,24#

PSP~s!54se22s, I SP~s!512~2s11!e22s. ~4!

At small s, PSP(s) exhibits a linear increase from zero~level
repulsion! similar to the Wigner surmise. At larges, PSP(s)
has an exponential fall-off as the Poisson statistics.

In Fig. 4 we plot the difference between the cumulati

FIG. 4. Difference between the cumulative spacing distribut
of the first energy window and the SP result.
04622
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spacing distribution to the SP result for the lowest-ene
window. Good agreement with the SP statistics can be
served. Figure 5 shows a magnification, containing also
other energy windows. We see increasing deviations from
for k5600 andk51000, and then decreasing deviations f
k51300 andk51500. No clear trend to SP is visible as on
goes to higher energies.

Similar small deviations from the SP statistics have be
observed at the metal-insulator transition in the thr
dimensional Anderson model. In that case, an ensemble
erage over certain boundary conditions removes the de
tions considerably@35#. To see whether this is possible als
in our case, we consider Neumann boundary conditions
the two boundary segments which do not touch the criti
corner; see Fig. 1. In this way we obtain four energy spec
corresponding to Dirichlet/Dirichlet, Dirichlet/Neumann
Neumann/Dirichlet, and Neumann/Neumann-boundary c
ditions. In contrast to the case of the Anderson model we fi
that averaging over these boundary conditions does no
duce the deviation from the SP statistics.

B. Next-to-nearest spacing distributions

We now consider the next-to-nearest spacing distribut
~second-neighbor-spacing distribution! and its integral. The
SP statistics gives@20#

PSP~2,s!5
8

3
s3e22s,

I SP~2,s!512
1

3
~4s316s216s13!e22s. ~5!

Figure 6 shows that the cumulative next-to-nearest sp
ing distribution is well described by the SP statistics. T
maximal deviations from SP are smaller than in the case
the nearest-neighbor spacing distribution in Fig. 5. B
again, there is no clear convergence to SP statistics as
goes to higher energies.

n FIG. 5. The cumulative spacing distribution of all energy wi
dows.
1-4



n

th

fiv
he
e

r

he
e-

er
e on

to

the
t
r

s

ber

tis-

-

EVANESCENT WAVE APPROACH TO DIFFRACTIVE . . . PHYSICAL REVIEW E 67, 046221 ~2003!
C. Number variance

So far we have studied short-range level correlatio
~nearest and next-to-nearest spacing distributions!. Long-
range level correlations are conveniently studied with
help of the number variance

S~L !5^~n~L,E!2L !2&. ~6!

S(L) is the local variance of the numbern(L,E)5N(E
1L/2)2N(E2L/2) of energy levels in the interval@E
2L/2,E1L/2#. For the SP statistics we have@19,20,24#

SSP~L !5
L

2
1

1

8
~12e24L!. ~7!

Figure 7 shows the number variance computed for the
energy windows. Note that the regime is well below t
crossover region whereS(L) begins to saturate at a valu
determined by the shortest periodic orbit@36#. With increas-
ing energy the number variance comes closer to the SP

FIG. 6. The cumulative next-to-nearest spacing distribution.

FIG. 7. Number varianceS(L) for k5100, 600, 1000, 1300,
and 1500~from below!.
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sult, without showing a clear stabilization. To estimate t
limit curve ask→` we use the extrapolation procedure d
scribed in Ref.@28#: extrapolate point by point~with L fixed!
the four highest curves with a fitA(L)1B(L)/k. The limit
curve,A(L), is shown as dashed curve in Fig. 7. It is clos
to the SP result. To measure the difference we concentrat
the slope in the region of largeL, the so-called level com-
pressibility

x5 lim
L→`

S~L !

L
. ~8!

We getx'0.41 from the extrapolated curve. This is close
the SP result@28# of 1/2 (1 for Poisson@36# and 0 for GOE
@16,36#!.

D. The form factor

Another measure of long-range level correlations is
form factor K(t), the Fourier transform of the two-poin
correlation function. The limitt→0 is related to the numbe
variance by means ofK(0)5x ~see, e.g., Ref.@28#! with x
from Eq. ~8!.

The form factor can be approximated numerically by~see,
e.g., Ref.@37#!

K~t;n!5
1

nU(j 5 l

l 1n

e2p iE jtU2

. ~9!

In our casen520 000. Note thatt is dimensionless. Figure 8
shows K(t;n) averaged over small intervals of sizeDt
50.006 in the high-energy regime, i.e.,k51500. It is diffi-
cult to estimateK(0) from such kinds of noisy data, but it i
justified to say thatK(0) is below the SP prediction 1/2, in
agreement with our former numerical results on the num
variance.

A better way to compare the form factor to the SP sta
tics is introduced in Ref.@28#. Fit K(t;n) to the function

FIG. 8. The form factor~9! for the highest-energy window av
eraged over small intervals of sizeDt50.006. The smooth curve is
the fit ~10! with c54.464.
1-5
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Kfit~t!5
c222c14p2t2

c214p2t2
. ~10!

If c54 then function~10! is the SP form factor. We use th
quantity Kfit(0)21/2 to measure the difference to the S
statistics. Keep in mind thatKfit(0), in general, differs from
K(0;n) since it depends also onK(t;n) with t.0. Figure 8
shows the result obtained by fitting Eq.~10! to the smoothed
data over the range 0<t<3. We getKfit(0)'0.552. For the
lower-energy windows withk5600, k51000, andk51300
we find 0.548, 0.576, and 0.56, respectively.

Again, as for the other spectral quantities described in
previous subsections, we find that the spectral statistic
roughly described by the SP statistics. However, there
small but significant deviations which show no clear trend
zero as the energies are increased.

IV. CONCLUSION

We have shown how the scaling method can be applie
convex billiards with corners. To gain insight into the stro
diffractive phenomena that appear in these systems we
studied the truncated triangle. As a result of our investi
tions of the diffracted field we could identify its main com
ponents. These were directly introduced in the function ba
in order to obtain the spectral data of this system. Evanes
waves conveniently selected and associated with the ce
of diffraction ~in our case the two straight segments juncti
at 3p/4) have been successfully identified as a very effici
way to deal with these kinds of phenomena. This allowed
to obtain a great number of highly excited eigenvalues.

We have studied the statistical properties of high-lyi
energy levels in this pseudointegrable billiard. We ha
found that the nearest-neighbor spacing distributions, n
to-nearest spacing distributions, number variance, and
spectral form factor are roughly described by the se
Poisson~SP! statistics. Whether the SP statistics is asym
totically the exact statistics cannot be decided.
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APPENDIX: THE SCALING METHOD

In this appendix we are going to briefly explain the sc
ing method@1–3#. The main point that one should have
mind is that the boundary norm can be written as a funct
of energy because scaling is used. Iff(r ) satisfies the Helm-
holtz equation with eigenvaluek0

2 and we associate with i
the scaling functionf(k,r )5f(kr /k0) then, these functions
satisfy the same equation with eigenvaluek2. If we have a
billiard defined by a star-shaped domain and akm exists such
that fm(km ,r )50 at the boundaryC, then this is a scaling
eigenfunction or, equivalently, an eigenfunction of the b
liard with Dirichlet boundary conditions.

The boundary norm defined by the expressionf (k)
5rCf2(k,r )dl/r n can be expanded up to third order arou
km , independently on the exact shape off. We remind that
r n5r•n ~wheren is the unit outgoing normal vector toC) is
always positive for star-shaped domains. Taking into acco
this result we can evaluate the norm and its derivative ink at
valuek05km1dm , obtaining

f ~k0!2
dm

2

d f

dk
~k0!1O~dm

4 !50. ~A1!

This useful expansion, dropping terms of orderdm
4 , turns

out to be our quantization condition. Then, all the scali
eigenfunctions with eigenvalues close tok0 can be found by
solving a generalized eigenvalue problem:

FdF

dk
~k0!2lmF~k0!Gjm50. ~A2!

In this equation and for numerical calculations, the qu
dratic formF associated withf can be evaluated in a basis o
scaling functionsc i(k,r ); i 51, . . . ,N ~such as plane waves
for instance! by means of

Fi j ~k0!5 R
C
c i~k0 ,r !c j~k0 ,r !dl/r n . ~A3!

The eigenfunctions arefm(k,r )5( i 51
N j i

mc i(k,r ), and the
eigenvalues can be found askm5k022/lm .
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